Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 14(1): 6332, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816716

RESUMEN

Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Reposicionamiento de Medicamentos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Combinación de Medicamentos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Línea Celular Tumoral
2.
Nat Genet ; 55(9): 1542-1554, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37580596

RESUMEN

Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.


Asunto(s)
Cromatina , Leucemia , Humanos , Cromatina/genética , Linaje de la Célula/genética , Hematopoyesis/genética , Diferenciación Celular/genética , Factores de Transcripción/genética
4.
Mol Cancer ; 22(1): 86, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210549

RESUMEN

BACKGROUND: The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS: Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS: PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS: Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Transporte de Membrana , Neoplasias Pancreáticas , Humanos , Autofagia/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Pulmón/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Neoplasias Pancreáticas
5.
Nat Commun ; 13(1): 7619, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494342

RESUMEN

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.


Asunto(s)
Síndromes Mielodisplásicos , Factores de Transcripción , Adulto , Humanos , Anciano , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Síndromes Mielodisplásicos/patología , Eritropoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción CHOP/genética
6.
STAR Protoc ; 3(4): 101770, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36242770

RESUMEN

Recurrent gene mutations often cooperate in a predefined stepwise and synergistic manner to alter global transcription, through directly or indirectly remodeling epigenetic landscape on linear and three-dimensional (3D) scales. Here, we present a multiomics data integration approach to investigate the impact of gene mutational synergy on transcription, chromatin states, and 3D chromatin organization in a murine leukemia model. This protocol provides an executable framework to study epigenetic remodeling induced by cooperating gene mutations and to identify the critical regulatory network involved. For complete details on the use and execution of this protocol, please refer to Yun et al. (2021).


Asunto(s)
Ensamble y Desensamble de Cromatina , Multiómica , Animales , Ratones , Cromatina , Mutación
7.
Sci Immunol ; 7(75): eabj0140, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112694

RESUMEN

Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by accumulation of surfactant lipoproteins within the lung alveoli. Alveolar macrophages (AMs) are crucial for surfactant clearance, and their differentiation depends on colony-stimulating factor 2 (CSF2), which regulates the establishment of an AM-characteristic gene regulatory network. Here, we report that the transcription factor CCAAT/enhancer binding protein ß (C/EBPß) is essential for the development of the AM identity, as demonstrated by transcriptome and chromatin accessibility analysis. Furthermore, C/EBPß-deficient AMs showed severe defects in proliferation, phagocytosis, and lipid metabolism, collectively resulting in a PAP-like syndrome. Mechanistically, the long C/EBPß protein variants LAP* and LAP together with CSF2 signaling induced the expression of Pparg isoform 2 but not Pparg isoform 1, a molecular regulatory mechanism that was also observed in other CSF2-primed macrophages. These results uncover C/EBPß as a key regulator of AM cell fate and shed light on the molecular networks controlling lipid metabolism in macrophages.


Asunto(s)
Macrófagos Alveolares , Surfactantes Pulmonares , Cromatina/metabolismo , Metabolismo de los Lípidos , Lipoproteínas/metabolismo , Macrófagos Alveolares/metabolismo , PPAR gamma/metabolismo , Isoformas de Proteínas/metabolismo , Surfactantes Pulmonares/metabolismo , Tensoactivos/metabolismo
8.
Plant Cell Environ ; 45(5): 1428-1441, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35037269

RESUMEN

Epigenetic regulation is necessary for optimal organism development and preservation of gene expression profiles in the cell. In plants, the trimethylation of histone H3 lysine 27 (H3K27me3) is a silencing epigenetic mark relevant for developmental transitions like flowering. The floral transition is a key agronomic trait; however, the epigenetic mechanisms of flowering time regulation in crops remain poorly understood. Here we study the Jumonji H3K27me3 demethylases BraA.REF6 and BraA.ELF6 in Brassica rapa. Phenotypic characterization of novel mutant lines and genome-wide H3K27me3 chromatin immunoprecipitation and transcriptomic analyses indicated that BraA.REF6 plays a greater role than BraA.ELF6 in fine-tuning H3K27me3 levels. In addition, we found that braA.elf6 mutants were early flowering due to high H3K27me3 levels at B. rapa homologs of the floral repressor FLC. Unlike mutations in Arabidopsis thaliana, braA.ref6 mutants were late flowering without altering the expression of B. rapa FLC genes. Remarkably, we found that BraA.REF6 regulated a number of gibberellic acid (GA) biosynthetic genes, including a homolog of GA1, and that GA-treatment complemented the late flowering mutant phenotype. This study increases our understanding of the epigenetic regulation of flowering time in B. rapa, highlighting conserved and distinct regulatory mechanisms between model and crop species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica rapa , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassica rapa/metabolismo , Epigénesis Genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo
9.
Nat Genet ; 53(10): 1443-1455, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556857

RESUMEN

Altered transcription is a cardinal feature of acute myeloid leukemia (AML); however, exactly how mutations synergize to remodel the epigenetic landscape and rewire three-dimensional DNA topology is unknown. Here, we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML: Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML. Our studies demonstrate that Flt3-ITD signals to chromatin to alter the epigenetic environment and synergizes with mutations in Npm1c to alter gene expression and drive leukemia induction. These analyses also allow the identification of long-range cis-regulatory circuits, including a previously unknown superenhancer of Hoxa locus, as well as larger and more detailed gene-regulatory networks, driven by transcription factors including PU.1 and IRF8, whose importance we demonstrate through perturbation of network members.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , ADN de Neoplasias/química , Regulación Leucémica de la Expresión Génica , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Mutación/genética , Procesamiento Proteico-Postraduccional , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos/genética , Redes Reguladoras de Genes , Sitios Genéticos , Humanos , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Nucleofosmina , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Tirosina Quinasa 3 Similar a fms/metabolismo
10.
Blood ; 138(17): 1583-1589, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34133718

RESUMEN

Although light-chain amyloidosis (AL) and multiple myeloma (MM) are characterized by tumor plasma cell (PC) expansion in bone marrow (BM), their clinical presentation differs. Previous attempts to identify unique pathogenic mechanisms behind such differences were unsuccessful, and no studies have investigated the differentiation stage of tumor PCs in patients with AL and MM. We sought to define a transcriptional atlas of normal PC development in secondary lymphoid organs (SLOs), peripheral blood (PB), and BM for comparison with the transcriptional programs (TPs) of tumor PCs in AL, MM, and monoclonal gammopathy of undetermined significance (MGUS). Based on bulk and single-cell RNA sequencing, we observed 13 TPs during transition of normal PCs throughout SLOs, PB, and BM. We further noted the following: CD39 outperforms CD19 to discriminate newborn from long-lived BM-PCs; tumor PCs expressed the most advantageous TPs of normal PC differentiation; AL shares greater similarity to SLO-PCs whereas MM is transcriptionally closer to PB-PCs and newborn BM-PCs; patients with AL and MM enriched in immature TPs had inferior survival; and protein N-linked glycosylation-related TPs are upregulated in AL. Collectively, we provide a novel resource to understand normal PC development and the transcriptional reorganization of AL and other monoclonal gammopathies.


Asunto(s)
Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Mieloma Múltiple/patología , Células Plasmáticas/patología , Transcriptoma , Adulto , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/genética , Mieloma Múltiple/genética , Células Plasmáticas/metabolismo , Células Tumorales Cultivadas
11.
Blood ; 137(1): 49-60, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32693406

RESUMEN

Patients with multiple myeloma (MM) carrying standard- or high-risk cytogenetic abnormalities (CAs) achieve similar complete response (CR) rates, but the later have inferior progression-free survival (PFS). This questions the legitimacy of CR as a treatment endpoint and represents a biological conundrum regarding the nature of tumor reservoirs that persist after therapy in high-risk MM. We used next-generation flow (NGF) cytometry to evaluate measurable residual disease (MRD) in MM patients with standard- vs high-risk CAs (n = 300 and 90, respectively) enrolled in the PETHEMA/GEM2012MENOS65 trial, and to identify mechanisms that determine MRD resistance in both patient subgroups (n = 40). The 36-month PFS rates were higher than 90% in patients with standard- or high-risk CAs achieving undetectable MRD. Persistent MRD resulted in a median PFS of âˆ¼3 and 2 years in patients with standard- and high-risk CAs, respectively. Further use of NGF to isolate MRD, followed by whole-exome sequencing of paired diagnostic and MRD tumor cells, revealed greater clonal selection in patients with standard-risk CAs, higher genomic instability with acquisition of new mutations in high-risk MM, and no unifying genetic event driving MRD resistance. Conversely, RNA sequencing of diagnostic and MRD tumor cells uncovered the selection of MRD clones with singular transcriptional programs and reactive oxygen species-mediated MRD resistance in high-risk MM. Our study supports undetectable MRD as a treatment endpoint for patients with MM who have high-risk CAs and proposes characterizing MRD clones to understand and overcome MRD resistance. This trial is registered at www.clinicaltrials.gov as #NCT01916252.


Asunto(s)
Resistencia a Antineoplásicos/genética , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Neoplasia Residual/patología , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos de Boro/uso terapéutico , Bortezomib/uso terapéutico , Aberraciones Cromosómicas , Dexametasona/uso terapéutico , Femenino , Citometría de Flujo , Glicina/análogos & derivados , Glicina/uso terapéutico , Humanos , Lenalidomida/uso terapéutico , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Resultado del Tratamiento
13.
Circulation ; 142(19): 1831-1847, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32972203

RESUMEN

BACKGROUND: Cardiac fibroblasts (CFs) have a central role in the ventricular remodeling process associated with different types of fibrosis. Recent studies have shown that fibroblasts do not respond homogeneously to heart injury. Because of the limited set of bona fide fibroblast markers, a proper characterization of fibroblast population heterogeneity in response to cardiac damage is lacking. The purpose of this study was to define CF heterogeneity during ventricular remodeling and the underlying mechanisms that regulate CF function. METHODS: Collagen1α1-GFP (green fluorescent protein)-positive CFs were characterized after myocardial infarction (MI) by single-cell and bulk RNA sequencing, assay for transposase-accessible chromatin sequencing, and functional assays. Swine and patient samples were studied using bulk RNA sequencing. RESULTS: We identified and characterized a unique CF subpopulation that emerges after MI in mice. These activated fibroblasts exhibit a clear profibrotic signature, express high levels of Cthrc1 (collagen triple helix repeat containing 1), and localize into the scar. Noncanonical transforming growth factor-ß signaling and different transcription factors including SOX9 are important regulators mediating their response to cardiac injury. Absence of CTHRC1 results in pronounced lethality attributable to ventricular rupture. A population of CFs with a similar transcriptome was identified in a swine model of MI and in heart tissue from patients with MI and dilated cardiomyopathy. CONCLUSIONS: We report CF heterogeneity and their dynamics during the course of MI and redefine the CFs that respond to cardiac injury and participate in myocardial remodeling. Our study identifies CTHRC1 as a novel regulator of the healing scar process and a target for future translational studies.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , RNA-Seq , Análisis de la Célula Individual , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Fibroblastos/patología , Humanos , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología
14.
Genome Res ; 30(9): 1217-1227, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32820006

RESUMEN

Multiple myeloma (MM) is a plasma cell neoplasm associated with a broad variety of genetic lesions. In spite of this genetic heterogeneity, MMs share a characteristic malignant phenotype whose underlying molecular basis remains poorly characterized. In the present study, we examined plasma cells from MM using a multi-epigenomics approach and demonstrated that, when compared to normal B cells, malignant plasma cells showed an extensive activation of regulatory elements, in part affecting coregulated adjacent genes. Among target genes up-regulated by this process, we found members of the NOTCH, NF-kB, MTOR signaling, and TP53 signaling pathways. Other activated genes included sets involved in osteoblast differentiation and response to oxidative stress, all of which have been shown to be associated with the MM phenotype and clinical behavior. We functionally characterized MM-specific active distant enhancers controlling the expression of thioredoxin (TXN), a major regulator of cellular redox status and, in addition, identified PRDM5 as a novel essential gene for MM. Collectively, our data indicate that aberrant chromatin activation is a unifying feature underlying the malignant plasma cell phenotype.


Asunto(s)
Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Células Plasmáticas/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Humanos , FN-kappa B/metabolismo , Osteogénesis/genética , Receptores Notch/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tiorredoxinas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
15.
Blood ; 136(2): 199-209, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32325491

RESUMEN

Granulocytic myeloid-derived suppressor cells (G-MDSCs) promote tumor growth and immunosuppression in multiple myeloma (MM). However, their phenotype is not well established for accurate monitoring or clinical translation. We aimed to provide the phenotypic profile of G-MDSCs based on their prognostic significance in MM, immunosuppressive potential, and molecular program. The preestablished phenotype of G-MDSCs was evaluated in bone marrow samples from controls and MM patients using multidimensional flow cytometry; surprisingly, we found that CD11b+CD14-CD15+CD33+HLADR- cells overlapped with common eosinophils and neutrophils, which were not expanded in MM patients. Therefore, we relied on automated clustering to unbiasedly identify all granulocytic subsets in the tumor microenvironment: basophils, eosinophils, and immature, intermediate, and mature neutrophils. In a series of 267 newly diagnosed MM patients (GEM2012MENOS65 trial), only the frequency of mature neutrophils at diagnosis was significantly associated with patient outcome, and a high mature neutrophil/T-cell ratio resulted in inferior progression-free survival (P < .001). Upon fluorescence-activated cell sorting of each neutrophil subset, T-cell proliferation decreased in the presence of mature neutrophils (0.5-fold; P = .016), and the cytotoxic potential of T cells engaged by a BCMA×CD3-bispecific antibody increased notably with the depletion of mature neutrophils (fourfold; P = .0007). Most interestingly, RNA sequencing of the 3 subsets revealed that G-MDSC-related genes were specifically upregulated in mature neutrophils from MM patients vs controls because of differential chromatin accessibility. Taken together, our results establish a correlation between the clinical significance, immunosuppressive potential, and transcriptional network of well-defined neutrophil subsets, providing for the first time a set of optimal markers (CD11b/CD13/CD16) for accurate monitoring of G-MDSCs in MM.


Asunto(s)
Antígenos CD , Mieloma Múltiple , Células Supresoras de Origen Mieloide , Proteínas de Neoplasias , Antígenos CD/sangre , Antígenos CD/genética , Antígenos CD/inmunología , Femenino , Estudios de Seguimiento , Humanos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/sangre , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Proteínas de Neoplasias/sangre , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Transcripción Genética/inmunología
16.
J Extracell Vesicles ; 9(1): 1729646, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158521

RESUMEN

Peripheral arterial disease (PAD) is associated with a high risk of cardiovascular events and death and is postulated to be a critical socioeconomic cost in the future. Extracellular vesicles (EVs) have emerged as potential candidates for new biomarker discovery related to their protein and nucleic acid cargo. In search of new prognostic and therapeutic targets in PAD, we determined the prothrombotic activity, the cellular origin and the transcriptomic profile of circulating EVs. This prospective study included control and PAD patients. Coagulation time (Procoag-PPL kit), EVs cellular origin and phosphatidylserine exposure were determined by flow cytometry in platelet-free plasma (n = 45 PAD). Transcriptomic profiles of medium/large EVs were generated using the MARS-Seq RNA-Seq protocol (n = 12/group). The serum concentration of the differentially expressed gene S100A9, in serum calprotectin (S100A8/A9), was validated by ELISA in control (n = 100) and PAD patients (n = 317). S100A9 was also determined in EVs and tissues of human atherosclerotic plaques (n = 3). Circulating EVs of PAD patients were mainly of platelet origin, predominantly Annexin V positive and were associated with the procoagulant activity of platelet-free plasma. Transcriptomic analysis of EVs identified 15 differentially expressed genes. Among them, serum calprotectin was elevated in PAD patients (p < 0.05) and associated with increased amputation risk before and after covariate adjustment (mean follow-up 3.6 years, p < 0.01). The combination of calprotectin with hs-CRP in the multivariate analysis further improved risk stratification (p < 0.01). Furthermore, S100A9 was also expressed in femoral plaque derived EVs and tissues. In summary, we found that PAD patients release EVs, mainly of platelet origin, highly positive for AnnexinV and rich in transcripts related to platelet biology and immune responses. Amputation risk prediction improved with calprotectin and was significantly higher when combined with hs-CRP. Our results suggest that EVs can be a promising component of liquid biopsy to identify the molecular signature of PAD patients.

17.
Gigascience ; 8(12)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800038

RESUMEN

BACKGROUND: Genome-wide maps of histone modifications have been obtained for several plant species. However, most studies focus on model systems and do not enforce FAIR data management principles. Here we study the H3K27me3 epigenome and associated transcriptome of Brassica rapa, an important vegetable cultivated worldwide. FINDINGS: We performed H3K27me3 chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis by 3'-end RNA sequencing from B. rapa leaves and inflorescences. To analyze these data we developed a Reproducible Epigenomic Analysis pipeline using Galaxy and Jupyter, packaged into Docker images to facilitate transparency and reuse. We found that H3K27me3 covers roughly one-third of all B. rapa protein-coding genes and its presence correlates with low transcript levels. The comparative analysis between leaves and inflorescences suggested that the expression of various floral regulatory genes during development depends on H3K27me3. To demonstrate the importance of H3K27me3 for B. rapa development, we characterized a mutant line deficient in the H3K27 methyltransferase activity. We found that braA.clf mutant plants presented pleiotropic alterations, e.g., curly leaves due to increased expression and reduced H3K27me3 levels at AGAMOUS-like loci. CONCLUSIONS: We characterized the epigenetic mark H3K27me3 at genome-wide levels and provide genetic evidence for its relevance in B. rapa development. Our work reveals the epigenomic landscape of H3K27me3 in B. rapa and provides novel genomics datasets and bioinformatics analytical resources. We anticipate that this work will lead the way to further epigenomic studies in the complex genome of Brassica crops.


Asunto(s)
Brassica rapa/crecimiento & desarrollo , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Histonas/metabolismo , Brassica rapa/genética , Inmunoprecipitación de Cromatina , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
18.
Cancer Res ; 79(3): 625-638, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30563891

RESUMEN

Because of the refractory nature of mutant KRAS lung adenocarcinoma (LUAD) to current therapies, identification of new molecular targets is essential. Genes with a prognostic role in mutant KRAS LUAD have proven to be potential molecular targets for therapeutic development. Here we determine the clinical, functional, and mechanistic role of inhibitor of differentiation-1 (Id1) in mutant KRAS LUAD. Analysis of LUAD cohorts from TCGA and SPORE showed that high expression of Id1 was a marker of poor survival in patients harboring mutant, but not wild-type KRAS. Abrogation of Id1 induced G2-M arrest and apoptosis in mutant KRAS LUAD cells. In vivo, loss of Id1 strongly impaired tumor growth and maintenance as well as liver metastasis, resulting in improved survival. Mechanistically, Id1 was regulated by the KRAS oncogene through JNK, and loss of Id1 resulted in downregulation of elements of the mitotic machinery via inhibition of the transcription factor FOSL1 and of several kinases within the KRAS signaling network. Our study provides clinical, functional, and mechanistic evidence underscoring Id1 as a critical gene in mutant KRAS LUAD and warrants further studies of Id1 as a therapeutic target in patients with LUAD. SIGNIFICANCE: These findings highlight the prognostic significance of the transcriptional regulator Id1 in KRAS-mutant lung adenocarcinoma and provide mechanistic insight into how it controls tumor growth and metastasis.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Femenino , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Mutación , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
19.
Nat Commun ; 9(1): 5454, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575740

RESUMEN

CRISPR/Cas9 technology offers novel approaches for the development of new therapies for many unmet clinical needs, including a significant number of inherited monogenic diseases. However, in vivo correction of disease-causing genes is still inefficient, especially for those diseases without selective advantage for corrected cells. We reasoned that substrate reduction therapies (SRT) targeting non-essential enzymes could provide an attractive alternative. Here we evaluate the therapeutic efficacy of an in vivo CRISPR/Cas9-mediated SRT to treat primary hyperoxaluria type I (PH1), a rare inborn dysfunction in glyoxylate metabolism that results in excessive hepatic oxalate production causing end-stage renal disease. A single systemic administration of an AAV8-CRISPR/Cas9 vector targeting glycolate oxidase, prevents oxalate overproduction and kidney damage, with no signs of toxicity in Agxt1-/- mice. Our results reveal that CRISPR/Cas9-mediated SRT represents a promising therapeutic option for PH1 that can be potentially applied to other metabolic diseases caused by the accumulation of toxic metabolites.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Sistemas CRISPR-Cas , Terapia Genética/métodos , Hiperoxaluria Primaria/terapia , Oxalatos/orina , Oxidorreductasas de Alcohol/genética , Animales , Modelos Animales de Enfermedad , Edición Génica , Células HEK293 , Humanos , Masculino , Ratones , Nefrocalcinosis/prevención & control
20.
Nat Ecol Evol ; 2(7): 1176-1188, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29942020

RESUMEN

A hallmark of metazoan evolution is the emergence of genomic mechanisms that implement cell-type-specific functions. However, the evolution of metazoan cell types and their underlying gene regulatory programmes remains largely uncharacterized. Here, we use whole-organism single-cell RNA sequencing to map cell-type-specific transcription in Porifera (sponges), Ctenophora (comb jellies) and Placozoa species. We describe the repertoires of cell types in these non-bilaterian animals, uncovering diverse instances of previously unknown molecular signatures, such as multiple types of peptidergic cells in Placozoa. Analysis of the regulatory programmes of these cell types reveals variable levels of complexity. In placozoans and poriferans, sequence motifs in the promoters are predictive of cell-type-specific programmes. By contrast, the generation of a higher diversity of cell types in ctenophores is associated with lower specificity of promoter sequences and the existence of distal regulatory elements. Our findings demonstrate that metazoan cell types can be defined by networks of transcription factors and proximal promoters, and indicate that further genome regulatory complexity may be required for more diverse cell type repertoires.


Asunto(s)
Evolución Biológica , Ctenóforos/citología , Placozoa/citología , Poríferos/citología , Transcripción Genética/fisiología , Animales , Ctenóforos/genética , Placozoa/genética , Poríferos/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...